skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sallum, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context.Photonic lanterns (PLs) are waveguide devices enabling high-throughput single-mode spectroscopy and high angular resolution. Aims.We aim to present the first on-sky demonstration of a PL operating in visible light, to measure its throughput and assess its potential for high-resolution spectroscopy of compact objects. Methods.We used the SCExAO instrument (a double-stage extreme adaptive optics system installed at the Subaru Telescope) and FIRST mid-resolution spectrograph (R 3000) to test the visible capabilities of the PL on internal source and on-sky observations. Results.The best averaged coupling efficiency over the PL field of view was measured at 51% ± 10%, with a peak at 80%. We also investigated the relationship between coupling efficiency and the Strehl ratio for a PL, comparing them with those of a single-mode fiber (SMF). Findings show that in the adaptive optics regime a PL offers a better coupling efficiency performance than an SMF, especially in the presence of low-spatial-frequency aberrations. We observed Ikiiki (αLeo –mR= 1.37) and ‘Aua (αOri –mR= −1.17) at a frame rate of 200 Hz. Under median seeing conditions (about 1 arcsec measured in theHband) and large tip or tilt residuals (over 20 mas), we estimated an average light coupling efficiency of 14.5% ± 7.4%, with a maximum of 42.8% at 680 nm. We were able to reconstruct both star’s spectra, containing various absorption lines. Conclusions.The successful demonstration of this device opens new possibilities in terms of high-throughput single-mode fiber-fed spectroscopy in the visible. The demonstrated on-sky coupling efficiency performance would not have been achievable with a single SMF injection setup under similar conditions, partly because the residual tip or tilt alone exceeded the field of view of a visible SMF (18 mas at 700 nm). This emphasizes the enhanced resilience of PL technology to such atmospheric disturbances. The additional capabilities in high angular resolution are also promising but still have to be demonstrated in a forthcoming investigation. 
    more » « less
  2. Abstract Herbig Ae/Be stars represent the early outcomes of star formation and the initial stages of planet formation at intermediate stellar masses. Understanding both of these processes requires detailed characterization of their disk structures and companion frequencies. We present new 3.7 μm imaging of the Herbig Be star MWC 297 from nonredundant masking observations on the phase-controlled, 23 m Large Binocular Telescope Interferometer. The images reveal complex disk structure on the scales of several au, as well as a companion candidate. We discuss physical interpretations for these features and demonstrate that the imaging results are independent of choices such as priors, regularization hyperparameters, and error-bar estimates. With an angular resolution of ∼17 mas, these data provide the first robust Extremely Large Telescope–resolution view of a distant young star. 
    more » « less